
Instruction Set Design for Coarse-Grained
Reconfigurable Architectures

Maria Dalila Vieira1 Lucas Bragança2 Michael Canesche2 Ricardo S. Ferreira 2 José Augusto M. Nacif1
1Science and Technology Institute, Universidade Federal de Viçosa, Florestal, Minas Gerais, Brasil

2Informatics Departament, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
{maria.d.vieira, lucas.braganca, michael.canesche, ricardo, jnacif}@ufv.br

Abstract—In the last ten years, the demand for performance
improvements in computing systems has not fulfilled by CPU
enhancements. A solution widely applied in different computing
is the use of hardware accelerators. In the industrial scenario,
accelerators such as Graphics Processing Unit (GPU) are more
popular because they offer a well-defined and established pro-
gramming interface. Besides having competitive performance,
especially in terms of energy efficiency, Field Programmable Gate
Array (FPGA) based accelerators are still challenging to develop.
Thus, it is necessary to look for ways to make the FPGA more
accessible and hiding hardware implementation details from the
programmer. This work proposes a low-level language to describe
configurations of a Coarse-Grained Reconfigurable Architecture,
which operates as a virtual layer on a FPGA. This virtual layer
is intended to hide hardware details and reduce reconfiguration
time. Our results present a concise set of instructions and a
competitive performance. We obtain more than 2.5 GOPS for
benchmarks with a dozen operations.

Index Terms—ISA, CGRA, FPGA, reconfigurable architec-
tures, dataflow computing

I. INTRODUCTION

Recent improvements in CPU performance do not supply
the increasing demand of computing systems, thus hardware
accelerators have become a widely adopted solution. In this
direction, a large part of high-performance systems is usu-
ally composed of heterogeneous platforms connected to a
general-purpose processor, such as a CPU, and a hardware
accelerator [6]. Currently, the most common accelerators are
Graphics Processing Units (GPUs), Field Programmable Gate
Array (FPGAs), and Application Specific Integrated Circuits
(ASICs). Each day, GPUs are becoming more accessible,
because they are programmed by specific languages: OpenCL
or C for Compute Unified Device Architecture (CUDA).
Whereas FPGAs are still programmed in hardware description
languages, such as Verilog or VHDL. Incidentally, even when
programming with OpenCL, FPGAs still require knowledge
of hardware details so that acceleration can be efficient [6].

One reason to prefer FPGAs over GPUs is the difference
in energy cost, FPGAs are clearly less expensive in terms
of energy costs [6]. The abstraction of hardware details that
are not fundamental to general-propose acceleration is a well-
known strategy to facilitate programming. Creating a Coarse-
Grained Reconfigurable Architecture (CGRA) as a virtual
layer over the FPGA is a method to dispense the gate-level
reconfigurability and gain a lower reconfiguration time [1].

Several papers in literature propose the implementation of
CGRAs with dataflow entries expressed in operations graphs.

In this paper, we propose a low-level language to describe
the CGRA input. The objective of this language is standard-
izing the description of the dataflow graph. For the matter of
simplicity, we choose a RISC-based ISA model, with fixed
formats. One of the main advantages of our work is the
concept of sources and destinations. In our architecture, they
can represent more than internal registers.

This article presents an Instruction Set Architecture (ISA)
to configure the CGRA specified in [1]. The remainder of
this paper shows more details as follows: in Section II we
show similarities of this work with other papers. Section
III describes CGRA characteristics that were fundamental in
ISA construction. Thereon, Section IV has ISA instructions
description. Finally, in Section V, we show our results and in
Section VI, we discuss the results and propose future work.

II. RELATED WORK

This section presents sets of instructions that describe
operations performed in dataflow processors by other works.
Each of the following paragraphs describes one of these works.

WaveScalar ISA [2] is a set of instructions that describe
operations performed over a dataflow architecture. An impor-
tant difference between previous dataflow architectures and
WaveSacalar is the traditional Von Newmann-style memory se-
mantics support. The instructions and values that are operated
are stored in a cache. The motivation for using this cache is the
optimization of the physical placement of instructions which
depend on each other. Through a good physical positioning
of instructions, it is possible to explore the dataflow locality.
In the instruction set, besides conventional operations, there
are operations to manage the control flow. Each WaveScalar
instruction contains an operation code and a list of targets for
each of the outputs of the instruction.

TRIP [3], [5] owns an instruction set architecture with
operand communication for data processing. The work goal
is to achieve more performance and energy efficiency. Perfor-
mance improvements are directed to the choice of a commu-
nication mechanism for each instruction during compilation.
This choice is made through a heuristic that defines the
communication mechanism. To encode this compiler decision
the authors use the instruction set definitions. Also, there



is micro-architectural support to treat hybrid communication
mechanism.

MORA [4] is a Coarse-Grained Reconfigurable Processor,
which is implemented in hardware. Similar to the works
above mentioned, it has a low-level programming language
to describe the performed operations. The objective of this
work is the accelerating media process applications through a
computing platform, which is easily adaptable, has a low cost
and great performance.

III. COARSE-GRAINED RECONFIGURABLE
ARCHITECTURE

Bragança et al. [1] define an architecture that has a process-
ing elements array, each one with 2 inputs and 2 outputs. Its
architecture particularity is the interconnection between inputs
and outputs, which is given by a blocking interconnection
network, more specifically an omega network.

The architecture is configured through high-level dataflow
graphs. In these graphs, each vertex represents an operation,
and the edges represent the data path. And each operation
must be mapped to a processing element. Once we did the
mapping, we must establish the routing in order for the input
data from the algorithm flow through the processing elements.
This happens so that every input can be connected to another
element output. Routing is only possible if we can connect
every input to an output.

Fig. 1. Abstract example of mapping and routing using Omega Network.

In addition to the input data of the algorithm performed in
the CGRA, we also need to send the configuration expressed
in bits to the FPGA. A part of these bits is used to represent
the configuration of each processing element, and other bits
determine the mapping and routing of the network. Figure 1
shows a mapping and routing example. In Figure 1 (a) we
show an operation graph, whose vertices are mapped for
processing elements in Figure 1 (b). The routing interconnects
the elements according to relations established by the graph
edges, as Figure 1 (b) denotes.

Figure 2 (a) is a simplified diagram of processing element
architecture. This diagram has only parts of the architecture
that have a direct relationship with ISA. The processing ele-
ments implementation is not exactly as defined in Figure 2 (a).

Fig. 2. Processing Element Architecture.

The CGRA implements three types of processing elements,
which belong to one of the following sets:

• Elements that can receive data from the input queue;
• Elements that can write data in the input queue;
• Elements that do not read or write in a FIFO, only

perform operations;
Figure 2 (a) shows the Arithmetic Logic Unit with 2 inputs

connected to multiplexers, each one with 2 input options.
The input A of the unit can receive data from input FIFO
(fifo in) or standard input (in a). And input B receives data
from standard input or a register of RegisterFile. The pro-
cessing elements outputs can be standard outputs A or B, or
output FIFO. This input and output definition is the basis to
instruction format, which is : Operation dst, A, B

Wherein dst represents the processing element output, and
the inputs are defined by A and B. The instruction set
architecture, which is explained in the next Section, turns each
instruction into a set of bits. Thus, the bits are classified ac-
cording to Table 2 (b). Opcode defines the operation identifier,
Control is given according to the dst, A and B types, Register
Read specifies a 4-bit number to identify a register to be read
and Register Write indicates a register to write.

Table 2 (b) defines the number of bits required for each
instruction field. As shown in this table, each bit set has 16
bits, and each field has 4 bits. Thus, the ISA represents the
processing elements with a limitation of 16 registers, because
they need to be represented with only 4 bits.

IV. INSTRUCTION SET ARCHITECTURE

The Instruction Set Architecture (ISA) receives an instruc-
tion set and returns the configuration bits of the network.
Therefore, the set of instructions is equivalent to the format
of the operations established in the dataflow graph. And the
format of the instructions follows the known RISC format,
with exceptions regarding the specifics of processing elements.



All ISA instructions have a destination and one or two
sources, as specified in Table I. Besides the format and fields,
that Table also shows which operation is represented by each
instruction. Table I defines the instructions fields according to
the performed operation. As the table shows, there are three
possible field types: destination (dst) and sources (A or B). The
definition of these fields, as mentioned at the end of section
III, is bound to the processing elements architecture.

TABLE I
INSTRUCTION SET ARCHITECTURE.

OpCode Instruction Assembly Description
0 passa dst, A dst = A
1 passb dst, B dst = B
2 min dst, A, B dst = min(A, B)
3 max dst, A, B dst = max(A, B)
0 beq dst*, A, B dst = equal(A, B)
1 bne dst*, A, B dst = not(A, B)
2 slt dst*, A, B dst = A < B
3 sgt dst*, A, B dst = A > B
4 add dst, A, B dst = A + B
5 sub dst, A, B dst = A - B
6 mult dst, A, B dst = A * B
7 xor dst, A, B dst = xor(A, B)
8 and dst, A, B dst = and(A, B)
9 or dst, A, B dst = or(A, B)

10 not dst, src dst = not(src)
11 shl dst, A, B dst = A << B
12 shr dst, A, B dst = A >> B
13 merge dst, A, B, PE dst = PE ? A : B
14 abs dst, src dst = abs(A, B)

*dst indicates branch output.

In Table I, the instructions passa and passb copy an input
value to an output. The following instructions, min and max,
compare two inputs and return the bigger or the smaller,
respectively. And beq, bne, slt, and sgt, return a bit through
the branch output. It indicates if the result of the operation is
true. Instructions with OpCodes 4-6 are arithmetic operations.
And OpCodes 7-12 indicates logic operations, being shl the
Shift Logical Left and shr the Shift Logical Right. The merge
is a multiplexer, it receives two values and last a control. And
finally, the operation absolute (abs) converts the input to the
respective unsigned value.

Instruction set fields are defined so that dst defines the
output of the processing element. That output can be directed
to the input of another element, or an output FIFO, or can even
be written in an element register. The first input is represented
by A, which indicates the possibility of input via FIFO or
output from another processing element. Due that a processing
element cannot be simultaneously capable of reading and
writing in the FIFO. The use of FIFO in A depends on whether
this feature has not been employed in dst. And finally, the B
indicates entrance of data from the output other processing
elements or the RegisterFile of the element.

As stated in the previous section, the instruction set aims to
describe an operation graph, wherein both represent dataflow
operations. In Figure 3, we show an example of conversion
from a graph to instructions. Furthermore, it shows the use of
the instruction set and how it represents the operations graph.

In the example 3 (b), before each instruction statement, there
is an integer. That value indicates the processing element that
executes the instruction. The use of a graph of operations such
as Figure 3(a) facilitates the correct formulation of instruc-
tions. In these graphs, the LD label indicates input FIFO, and
the ST label denotes output FIFO. The other vertices represent
the operations labeled on them. The edges that arrive at the
corresponding operation vertices denote instructions source.
Arrows that come out of these corresponding vertices indicate
the instructions destinations.

Fig. 3. Operations graph and our ISA instructions.

In Figure 3(b), the instructions are grouped into a CGRA
due to ISA can perform several CGRAs at once. However, we
must establish some important CGRA configurations before.
Those configuration values, respectively are:

• loop begin: it is the height of the input graph to which
the loop should return;

• ignore until: represents an initial time for FIFO writings;
• pe count: represents the total of processing elements;
• pe ld: it is a list of processing elements with FIFO input;
• pe st: it is a list of processing elements with FIFO output;
For the FIFO reading to occur, the processing element

responsible for it must belong to the list (pe ld). The same
applies to the FIFO writing and the list (pe st). Moreover, a
processing element cannot have an index greater than the value
defined in the term (pe count).

V. RESULTS

We developed an Instruction Set Architecture to facilitate
the description of programs executed in CGRA. For this
reason, the instructions are simple, standardized and clearly
describe the processing element’s operation and the input data
flow. We present the results analysis in two parts, the first
compares the number of instructions that describes a code,
and the second compares it in terms of efficiency.

A. Code analysis

This Section compares the x86-64 instruction set and our
instruction set. In Figure 4, we show an algorithm imple-
mented in C (a), and in x86-64 assembly (b). We choose
compare our instruction set with the x86-64 assembly because



we aim to compare the i5 with our architecture. And we
choose implement this code because of simplicity and the
employment of several resources of our architecture. That is
because we decide to use a single example in the whole article.
A good part of the i5 instructions is spent with the loop
and indexing the vector. Precisely because our ISA describes
dataflow operations, loops do not represent an increase in
the number of instructions. Furthermore, for the C code, the
compiler needs to do loop unrolling or pipeline software
to achieve performance, which it is not necessary for our
architecture. And the dataflow replaces the vectors. Thus,
we can describe the same algorithms with fewer instructions.
Figure 3 (b) shows our instruction set which represents the
operations graph mapped in Figure 1. That instructions are
equivalent to the x86-64 instructions, shown in Figure 4 (b).
That is, the operations of the graph in 3 (b) correspond to the
algorithm in 4 (a).

Fig. 4. Algorithm in C, and x86-64 instructions correspondents.

B. Performance analysis

This section compares our performance results with the
performance of other common processors. Table II presents
the Giga Operations per Second (GOPS) for benchmarks. The
CPU baseline is the common processor Intel Core i5-4210U
1.70GHz with 4 cores and 3072K of L3 cache. For the CPU
performance measurement we use C++ codes parallelized with
OpenMP equivalent to the graph of each benchmark. We used
g++ 8.3.1 (Red Hat 8.3.1-2) to compile these codes. The FPGA
synthesis is running at 200 MHz in Intel Arria10.

TABLE II
BENCHMARKS : PERFORMANCE RESULTS IN GOPS.

Relevant GOPS
Benchmark Operations Intel i5 Arria10 Speedup

FIR 125 28.04 25 1.12
K-means 93 12.65 18.6 0.68

Paeth 19 5.55 3.8 1.46
Sobel 37 2.88 7.4 0.38
Poly5 27 2.99 5.4 0.55
Poly6 44 4.14 8.8 0.47
Poly8 32 2.9 6.4 0.45

Mibench 13 2.59 2.6 0.99
Sgfilter 15 2.61 3 0.87
Qspline 26 2.68 5.2 0.52

Chebyshev 7 4.2 1.4 3.00

These values represent only the results of code execution,
they disregard the times of CGRA network reconfiguration and
data entry to the FPGA. For this reason, the actual performance
of our system is slightly smaller than the Table II shows.
Moreover, so that the time of configuration and transfer of
data to the FPGA has less influence in total execution time, it
is substantial to ensure that we use a great proportion of the
processing elements.

VI. CONCLUSIONS AND FUTURE WORK

We have created an instruction set architecture that describes
the operations in the CGRA [1]. Besides to describe opera-
tions, the ISA is also responsible for mapping each instruction
to a processing element. This architecture also generates the
network configuration for the interconnection of the processing
elements. In other words, the ISA gives all the settings required
by CGRA. Then, as we aim, the contact of the programmer
with the FPGA is facilitated. The programmer does not have
to worry about specific details of this platform, and there is
still practically no loss of performance in the execution and
improvement in reconfiguration time. Our results indicate that
we got a brief set of instructions, which can simplify the use
of FPGAs as a generic accelerator.

We plan to search for the most commonly used instructions
in the context of work, which is hardware acceleration. Once
we found expected answers, we intend to add these instructions
to ISA. Therefore, we consider to include instructions with
immediate fields as our first step. Another interesting future
project about this work is to adjust the instructions to the
RISC-V specifications.

ACKNOWLEDGMENT

The authors thank CAPES, FAPEMIG, and CNPQ for the
financial support. We also thank Intel Altera, and Synopsys
for the software licenses. Finally we thank Paderborn Center
for Parallel Computing for providing access to the CPU-FPGA
platform.

REFERENCES

[1] Lucas Bragança da Silva et al. ”READY: A Fine-Grained Multithreading
Overlay Framework for Modern CPU-FPGA Dataflow Applications”.
ACM Trans. Embed. Comput. Syst. (To appear).

[2] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin.
”WaveScalar”. In Proceedings of the 36th annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO 36). IEEE Computer
Society. 2003.

[3] Li, Dong, Behnam Robatmili, Sibi Govindan, Doug Burger and Steve
Keckler. Hybrid Operand Communication for Dataflow Processors.
2009.

[4] S. R. Chalamalasetti, S. Purohit, M. Margala and W. Vanderbauwhede,
”MORA - An Architecture and Programming Model for a Resource
Efficient Coarse Grained Reconfigurable Processor,” NASA/ESA Con-
ference on Adaptive Hardware and Systems. 2009.

[5] A. Smith et al., ”Compiling for EDGE architectures,” International
Symposium on Code Generation and Optimization (CGO’06). 2006.

[6] Lucas Bragança et al. ”Simplifying HW/SW integration to deploy
multiple accelerators for CPU-FPGA heterogeneous platforms.” In Pro-
ceedings of the 18th International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS ’18). 2018.


